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Abstract

Large-scale pre-trained video generation mod-
els excel in content creation but are not reliable
as physically accurate world simulators out of
the box. This work studies the process of post-
training these models for accurate world modeling
through the lens of the simple, yet fundamental,
physics task of modeling object freefall. We show
state-of-the-art video generation models struggle
with this basic task, despite their visually impres-
sive outputs. To remedy this problem, we find
that fine-tuning on a relatively small amount of
simulated videos is effective in inducing the drop-
ping behavior in the model, and we can further
improve results through a novel reward model-
ing procedure we introduce. Our study also re-
veals key limitations of post-training in gener-
alization and distribution modeling. Addition-
ally, we release a benchmark for this task that
may serve as a useful diagnostic tool for track-
ing physical accuracy in large-scale video gen-
erative model development. Code is available
at this repository: https://github.com/
vision-x-nyu/pisa-experiments.

1. Introduction
Over the past year, video generation models have advanced
significantly, inspiring visions of a future where these mod-
els could serve as realistic world models (Craik, 1967; Le-
Cun, 2022; Hafner et al., 2019; 2023; Ha & Schmidhuber,
2018). State-of-the-art video generation models models ex-
hibit impressive results in content creation (OpenAI, 2024;
Kuaishou, 2024; Luma, 2024; Runway, 2024) and are al-
ready being used in advertising and filmmaking (Runway,
2025; NBC, 2025). These advancements have sparked a
line of research that seeks to evolve these models from con-
tent creators to world simulators for embodied agents (Yang

*Equal contribution, alphabetical order. 1New York University
2Intel Labs.

et al., 2023; 2024b; Agarwal et al., 2025). However, accu-
rate world modeling is considerably more challenging than
creative content creation because looking “good enough” is
not sufficient: generated pixels must faithfully represent a
world state evolving in accordance with the laws of physics
and visual perspective.

We find that although the generations of state-of-the-art
models are impressive visually, these models still struggle
to generate results that are accurate physically, even though
these models are pretrained on internet-scale video data
demonstrating a wide variety of complex physical interac-
tions. The failure to ground and align visual generations to
the laws of physics suggests that pretraining is not enough
and a post-training stage is needed. Much like how pre-
trained Large Language Models (LLMs) need to be adapted
through post-training before they can be useful conversa-
tional assistants, pretrained video generative models ought
to be adapted through post-training before they can be de-
ployed as physically accurate world simulators.

In this work, we rigorously examine the post-training pro-
cess of video generation models by focusing on the simple
yet fundamental physics task of modeling object freefall,
which we find is highly challenging for state-of-the-art mod-
els. Specifically, we study an image-to-video1 (I2V) sce-
nario where the goal is to generate a video of an object
falling and potentially colliding with other objects on the
ground, starting from an initial image of the object sus-
pended in midair. We chose to study this single task, rather
than general physics ability as a whole, because its simplic-
ity allows us to conduct controlled experiments that yield
insights into the strengths and limitations of the post-training
process, which we believe will become an increasingly im-
portant component of research in generative world modeling.
Additionally, the simplicity of the dropping task allows it to
be implemented in simulation which is desirable because it
allows us to easily test the properties of dataset scaling, gives
us access to ground truth annotations for evaluation, and
gives us the ability to precisely manipulate the simulation
environment for controlled experimentation.

1We discuss our decision to formulate this task in the image-to-
video setting instead of the video-to-video setting in Appendix A.
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Figure 1. Our PISA (Physics-Informed Simulation and Alignment) evaluation framework includes a new video dataset, where objects are
dropped in a variety of real-world (left) and synthetic (right) scenes. For visualization purposes, we depict object motion by overlaying
multiple video frames in each image shown above. Our real-world videos enable us to evaluate the physical accuracy of generated video
output, and our synthetic videos enable us to improve accuracy through the use of post-training alignment methods.

Named after Galileo’s famous dropping experiment, we in-
troduce the PISA (Physics-Informed Simulation and Align-
ment) framework for studying physics post-training in the
context of the dropping task. PISA includes new real and
simulated video datasets, as shown in Figure 1, containing
a diverse set of dropping scenarios. PISA also includes a
set of task-specific metrics that focus on measuring physical
accuracy. Our real-world videos and metrics enable us to
evaluate the physical accuracy of generated video output,
and our synthetic videos enable us to improve accuracy
through a post-training process we introduce.

Our study reveals that current state-of-the-art video genera-
tive models struggle significantly with the task of physically
accurate object dropping. Generated objects frequently ex-
hibit impossible behaviors, such as floating midair, defying
gravity, or failing to preserve realistic trajectories during
freefall. However, we find that simple fine-tuning can be
remarkably effective: fine-tuning an open-source model on
a small dataset of just a few thousand samples enables it to
vastly outperform state-of-the-art models in physical accu-
racy. We further observe that pretrained models are critical
for success; models initialized randomly, without leverag-
ing pretraining on large-scale video datasets, fail to achieve
comparable results. We also introduce a novel framework
for reward modeling that yields further improvement. We
demonstrate that our reward learning system is highly flexi-
ble in that different reward functions can be chosen to target
different axes of physical improvement.

Our analysis also reveals key limitations. First, we see that
model performance degrades when tasked with scenarios
outside the training distribution, such as objects dropping
from unseen depths or heights. Additionally, while our post-

trained model generates object motion that is 3D-consistent
and physically accurate, we observe misalignment between
the generated and ground truth dropping time distribution.

These findings indicate that post-training is likely to be
an essential component of future world modeling systems.
The challenges we identify in this relatively simple task are
likely to persist when modeling more sophisticated physical
phenomena. By introducing the PISA framework and bench-
mark, we provide a useful diagnostic tool for researchers
to test whether models are on the path to acquiring gen-
eral physical abilities, as well as identify key limitations
that researchers should be aware of when integrating new
capabilities into their models through post-training.

2. Related Work
Modeling Intuitive Physics. Intuitive physics refers to the
innate or learned human capacity to make quick and accu-
rate judgments about the physical properties and behaviors
of objects in the world, such as their motion, stability, or in-
teractions. This ability, present even in infancy (Spelke et al.,
1992; Baillargeon, 2004; Battaglia et al., 2013), is crucial
for navigating and understanding everyday life. Replicat-
ing intuitive physics is a foundational step toward creating
systems that can interact effectively and safely in dynamic,
real-world environments (Lake et al., 2017). Gravity, as a
core component of intuitive physics, plays a pivotal role in
both domains. It is one of the most universal and observable
physical forces, shaping our expectations about object mo-
tion, stability, and interaction (Hamrick et al., 2016; Ullman
et al., 2017). Many studies in cognitive science (Battaglia
et al., 2013) and AI (Wu et al., 2015; Bear et al., 2021) have
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relied on physics engines to evaluate and model intuitive
physics. Our work uses the Kubric engine (Greff et al.,
2022) to generate training videos.

Video Generation Models as World Simulators. Video
generation has long been an intriguing topic in computer
vision, particularly in the context of predicting future
frames (Srivastava et al., 2015; Xue et al., 2016). More re-
cently, as large-scale generative models have become promi-
nent, Yang et al. explored how a wide range of real-world
dynamics and decision-making processes can be expressed
in terms of video modeling (Yang et al., 2024b; 2023). The
introduction of the Sora model (OpenAI, 2024) marked a
leap in the quality of generated videos and ignited interest
in leveraging such models as “world simulators.” Over the
past year, numerous video generation models have emerged,
some open-source (Zheng et al., 2024; Yang et al., 2024c; Jin
et al., 2024; Agarwal et al., 2025) and others commercially
available (Kuaishou, 2024; Luma, 2024; Runway, 2024;
OpenAI, 2024). Related to our work, Kang et al. (Kang
et al., 2024) study the extent to which video generation mod-
els learn generalizable laws of physics when trained on 2D
data from a synthetic environment.

Evaluating Video Generation Models. Traditional image-
based metrics for generative modeling, such Fréchet in-
ception distance (FID) (Heusel et al., 2017) or inception
score (IS) (Salimans et al., 2016), can be incorporated into
the video domain, either by applying them on a frame-
by-frame basis or by developing video-specific versions,
such as Fréchet video distance (FVD) (Unterthiner et al.,
2018). Going beyond distribution matching measures, sev-
eral benchmarks have developed suites of metrics that aim
to better evaluate the semantic or visual quality of generated
videos. For example, V-Bench (Huang et al., 2024) offers a
more granular evaluation by measuring video quality across
multiple dimensions, such as with respect to subject consis-
tency or spatial relationships. In physics, some works, such
as VideoPhy (Bansal et al., 2024) and PhyGenBench (Meng
et al., 2024), evaluate in the T2V setting by utilizing multi-
modal large language models (MLLM) to generate a VQA-
based score. More recently, Cosmos (Agarwal et al., 2025)
and Physics-IQ (Motamed et al., 2025), evaluate physics in
the image-to-video and video-to-video settings.

3. PisaBench
Our benchmark, PisaBench, examines the ability of video
generative models to produce accurate physical phenomena
by focusing on a straightforward dropping task.

3.1. Task Definition & Assumptions

Our task can be summarized as follows: given an image of
an object suspended in midair, generate a video of the object

Other objects 
on the ground

Capturing slow-
motion videos at 
120 FPS in 720p

Object being dropped

"Invisible" 
hanging wire

Figure 2. The setup for collecting real-world videos.

falling and colliding with the ground and potentially other
objects. Since a video is an incomplete partial observation
of the 4D world, we make a number of assumptions to
constrain the task space. These assumptions are crucial for
ensuring that our metrics are reliable signals for physical
accuracy, since they are only approximations of task success
computed from a single ground truth and generated video.

Specifically, we assume that the falling object is completely
still in the initial frame, that only the force of gravity is
acting on the object while it falls, and that the camera does
not move. The first two assumptions are necessary for the
image-to-video setting. Since we do not provide multiple
frames as input, it is otherwise impossible to establish the
initial velocity or acceleration of the falling object without
these assumptions. The last assumption is necessary as
our metrics derive from the motion of segmentation masks,
which would be affected in the presence of camera motion.

3.2. Real World Data
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Figure 3. Statistics of the real-world data: (a) number of objects in
each video, (b) the proportions of different scenes in the videos.

Real World Videos. We collect a set of 361 real-world
videos demonstrating the dropping task for evaluation. As
is shown in Figure 4, the dataset includes a diverse set
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Simulation

Real World

Figure 4. Examples of various objects included in our dataset. For
simulation, we utilize the GSO dataset (Downs et al., 2022), while
for the real-world dataset, we curate our own set of common
household objects.

of objects with different shapes and sizes, captured across
various settings such as offices, kitchens, parks, and more
(see Figure 3). Each video begins with an object suspended
by an invisible wire in the first frame, which is necessary
to enforce the assumption that objects are stationary at the
start of the video. This assumption is required in our image-
to-video setting; otherwise, the initial velocity of an object
is ambiguous. We cut the video clips to begin as soon as the
wire is released. We record the videos in slow-motion at 120
frames per second (fps) with cellphone cameras mounted
on tripods to eliminate camera motion. An example of our
video collection setup is show in Figure 2. Additional details
on our collection system are provided in Appendix H.

Simulated Test Videos. Since our post-training process
uses a dataset of simulated videos, we also create a simula-
tion test-set of 60 videos for understanding sim2real transfer.
We create two splits of 30 videos each: one featuring ob-
jects and backgrounds seen during training, and the other
featuring unseen objects and backgrounds. See Section 4.1
for details on how our simulated data is created.

Annotations. As is shown in Figure 5, we annotate each
video with a caption and segmentation masks estimated
from the SAM 2 (Ravi et al., 2024) video segmentation
model. We create a descriptive caption for each object in the
format of “{object description} falls.” This caption is used
to provide context to the task when text input is supported.

3.3. Metrics

We propose three metrics to assess the accuracy of trajecto-
ries, shape fidelity, and object permanence. Each of our met-
rics compare frames from the ground-truth video with the
generated video. Further details about the metrics, including

“A Black helmet falls.”

Caption

Figure 5. Example of annotations in real-world data. For segmen-
tation masks, we manually annotate first frame and utilize SAM 2
to produce segmentation masks across frames. For captions, we
annotate “{object description} falls.” for all video segments.

their formulas and our resampling procedure for accounting
for differences in fps, is described in Appendix B.

Trajectory L2. For each frame in both the generated video
and ground truth, we calculate the centroid of the masked re-
gion. After doing this, we compute the average L2 distance
between the centroids of corresponding frames.

Chamfer Distance (CD). To assess the shape fidelity of
objects, we calculate the Chamfer Distance (CD) between
the mask regions of the generated video and ground truth.

Intersection over Union (IoU). We use the Intersection
over Union (IoU) metric to evaluate object permanence.
The IoU measures objects’ degree of overlap between the
generated video and ground truth.

3.4. Evaluation Results

We evaluate 4 open models including CogVideoX-5B-
I2V(Yang et al., 2024c), DynamiCrafter(Xing et al., 2023),
Pyramid-Flow(Jin et al., 2024), and Open-Sora-V1.2(Zheng
et al., 2024), as well as 4 proprietary models including
Sora (OpenAI, 2024), Kling-V1(Kuaishou, 2024), Kling-
V1.5(Kuaishou, 2024), and Runway Gen3 (Runway, 2024).
We also evaluate OpenSora post-trained through the pro-
cesses of Supervised Fine-Tuning (PSFT) and Object Re-
ward Optimization (ORO); see Section 4 for details.

The results of running the baseline models on the benchmark
indicate a consistent failure to generate physically accurate
dropping behavior, despite the visual realism of their gen-
erated frames. Qualitatively, we see common failure cases
in Figure 6, such as implausible object deformations, float-
ing, hallucination of new objects, and unrealistic special
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Ground Truth Kling V1.5 Open-Sora Open-Sora + PSFT Open-Sora + ORO (Seg) Open-Sora + ORO (Flow) Open-Sora + ORO (Depth)

Figure 6. Qualitative comparison of results on real test set (row 1-2), simulated seen test set (row 3-4) and simulated unseen test set (row
5-6). We present the results of popular open-source and commercially available models alongside those of models fine-tuned through our
method. Existing models often struggle to generate videos depicting objects falling, whereas our PSFT method effectively introduces
knowledge of free-fall into the model. ORO enables the model to more accurately learn object motion and shape.

effects. We further visualize a random subset of generated
trajectories on the left of Figure 8. In many cases, the object
remains completely static, and sometimes the object even
moves upward. When downward motion is present, it is
often slow or contains unrealistic horizontal movement.

4. Physics Post-Training
We present a post-training process to address the limitations
of current models described in Section 3.4. We utilize sim-
ulated videos that demonstrate realistic dropping behavior.
Our approach for post-training is inspired by the two-stage
pipeline consisting of supervised fine-tuning followed by
reward modeling commonly used in LLMs. We find that
our pipeline improves performance on both real and simu-
lated evaluations, with greater gains observed in simulation.
This is due to the sim-to-real gap, though our approach still
shows substantial gains in transferring to real-world data.

4.1. Simulated Adaptation Data

The first stage of our approach involves supervised fine-
tuning. We use Kubric (Greff et al., 2022), a simulation and
rendering engine designed for scalable video generation, to
create simulated videos of objects dropping and colliding
with other objects on the ground. Each video consists of
1-6 dropping objects onto a (possibly empty) pile of up to
4 objects underneath them. The videos are 2 seconds long,
consisting of 32 frames at 16 fps. The objects are sourced
from the Google Scanned Objects (GSO) dataset (Downs
et al., 2022), which provides true-to-scale 3D models created
from real-world scans across diverse categories (examples
shown in Figure 4). The camera remains stationary in each
video and is oriented parallel to the ground plane. To in-
troduce variability, we randomly sample the camera height

between 0.4 and 0.6 meters and position objects between 1
and 3 meters away from the camera, which corresponds to
the distributions observed in the real-world dataset. More
information about the dataset can be found in Appendix K.

4.2. Physics Supervised Fine-Tuning (PSFT).

（a) （b)

（c) （d)

Figure 7. Plots (a), (b), and (c) demonstrate that our metrics tend
to improve with further training and that leveraging a pre-trained
video diffusion model enhances performance compared to random
initialization. In plot (d), the size of the training dataset varies
in each training run (each consisting of 5k steps). With only 5k
samples, we can achieve optimal results.

We use the pretrained Open-Sora v1.2 (Zheng et al., 2024)
model as our base model and fine-tune it on our simulated
video dataset. We employ Open-Sora v1.2’s rectified flow
training objective without modification (Liu et al., 2022).
Each fine-tuning experiment is conducted with a batch size
of 128 and a learning rate of 1e−4 on two 80GB NVIDIA
A100 GPUs. As shown in Figure 6, fine-tuning with this
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Real Sim (Seen) Sim (Unseen)

Method L2 (↓) CD (↓) IoU (↑) L2 (↓) CD (↓) IoU (↑) L2 (↓) CD (↓) IoU (↑)

Pr
op

ri
et

ar
y Sora (OpenAI, 2024) 0.174 0.488 0.065 0.149 0.446 0.040 0.140 0.419 0.031

Kling-V1 (Kuaishou, 2024) 0.157 0.425 0.056 0.142 0.415 0.032 0.145 0.437 0.028
Kling-V1.5 (Kuaishou, 2024) 0.155 0.424 0.058 0.137 0.396 0.033 0.132 0.405 0.029
Runway Gen3 (Runway, 2024) 0.187 0.526 0.042 0.170 0.509 0.040 0.149 0.460 0.038

O
pe

n

CogVideoX-5B-I2V (Yang et al., 2024c) 0.138 0.366 0.080 0.112 0.315 0.020 0.101 0.290 0.020
DynamiCrafter (Xing et al., 2023) 0.187 0.504 0.021 0.157 0.485 0.039 0.136 0.430 0.033
Pyramid-Flow (Jin et al., 2024) 0.175 0.485 0.062 0.126 0.352 0.059 0.130 0.381 0.048
Open-Sora (Zheng et al., 2024) 0.175 0.502 0.069 0.139 0.409 0.036 0.130 0.368 0.034

O
ur

s

Open-Sora + PSFT (base) 0.076 0.188 0.139 0.036 0.088 0.165 0.028 0.058 0.129
base + ORO (Seg) 0.075 0.183 0.142 0.033 0.076 0.170 0.032 0.063 0.145
base + ORO (Flow) 0.067 0.164 0.136 0.026 0.062 0.122 0.022 0.045 0.071
base + ORO (Depth) 0.067 0.159 0.129 0.031 0.072 0.124 0.022 0.046 0.096

Table 1. PisaBench Evaluation Results. This table compares the performance of four proprietary models, four open models, and the models
fine-tuned with PSFT and PSFT + ORO on our real-world and simulated test set which is decomposed into seen and unseen object splits.
Across all metrics, our PSFT models outperform all other baselines, including proprietary models like Sora. Reward modeling further
enhances results, with segmentation rewards improving the shape-based IoU metric and optical rewards and depth rewards enhancing the
motion-based L2 and CD metrics. This suggests that rewards can be flexibly adjusted to target specific aspects of performance.

data alone is sufficient to induce realistic dropping behavior
in the model. Quantitatively, our PSFT model substantially
improves on both our simulated and real-world benchmark,
as shown in Table 1. Dataset size. We conduct an ablation
study on the number of training samples to understand the
amount of data required for optimal performance on our
benchmark. We create random subsets from 500 to 20,000
samples and train our model for 5,000 gradient steps on
each subset. Notably, as shown in Figure 7, only 5,000
samples are needed to achieve optimal results. Effect of pre-
training. Additionally, we investigate the impact of Open-
Sora’s pre-training on adaptation. We randomly initialize
the Open-Sora’s denoising network while keeping the pre-
trained initialization of the compressor network and train
the model on a dataset of 5k training samples. As shown
in Figure 8, the learned knowledge from Open-Sora’s pre-
training plays a critical role in our task.

Overall, using PSFT on only 5k samples is sufficient to push
Open-Sora’s performance past all other evaluated models,
including state-of-the-art commercial video generators, by
a wide margin. This is made possible by leveraging the
knowledge from the sufficiently pre-trained base model.

4.3. Object Reward Optimization (ORO)

In the second stage, we propose Object Reward Optimiza-
tion (ORO) to use reward gradients to guide the video gen-
eration model toward generating videos where the object’s
motion and shape more closely align with the ground truth.

14/36 are static trajectories

Figure 8. On the left, we plot random trajectories from the baseline
models in Table 1. On the right, we show random trajectories from
our fine-tuned model. The baseline trajectories exhibit unrealistic
behavior, and most of them stay completely static. On the right, we
see the trajectories consistently falling downward with collision
and rolling behavior being modeled after the point of contact.

We follow the VADER framework from (Prabhudesai et al.,
2024) and introduce three reward models. The differences
between our approach and VADER include: (1) our reward
model utilizes both generated videos and ground truth in-
stead of generated videos and conditioning. (2) gradients
propagate through all denoising time steps in fine-tuning.
Consequently, the VADER objective is modified as follows:

J(θ) = E(x0,c)∼D,x′
0∼pθ(x′

0|c)[R(x′
0, x0)] (1)

where D is the ground truth dataset, pθ(.) is a given video
diffusion model, x′

0, x0 ∈ RH×W×3 are generated video
and ground truth, and c ∈ RH×W×3 is the initial image.

Segmentation Reward. We utilize SAM 2 (Ravi et al.,
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2024) to generate segmentation masks across frames for
generated videos. We define segmentation reward as the
IoU between the dropping object’s mask in generated video
and the mask from the groud truth simulated segmentation.

Optical Flow Reward. We utilize RAFT (Teed & Deng,
2020) to generate generated video’s optical flow V gen and
ground truth’s optical flow V gt. We define the optical flow
reward as R(x′

0, x0) = −|V gen − V gt|.

Depth Reward. We utilize Depth-Anything-V2 (Yang et al.,
2024a) to generate generated video’s depth map Dgen and
ground truth’s depth map Dgt. We define the optical flow
reward as R(x′

0, x0) = −|Dgen −Dgt|.

Details on implementation can be found in Appendix C.

We begin from the checkpoint of the first stage, which is
trained on 5,000 samples trained over 5,000 gradient steps.
We then fine-tune the model with ORO on the simulated
dataset, using a batch size of 1 and two 80GB NVIDIA A100
GPUs for each fine-tuning experiment. We set a learning
rate of 1e−6 for segmentation reward and depth reward and
1e−5 for optical flow.

As shown in Table 1, incorporating ORO in reward modeling
further improves performance. Additionally, each reward
function enhances the aspect of physicality that aligns with
its intended purpose—segmentation rewards improve shape
accuracy, while flow rewards and depth rewards improve
motion accuracy. This demonstrates the process is both
modular and interpretable.

5. Assessing Learned Physical Behavior
Having introduced our post-training approaches in Section 4,
we probe into the model’s understanding of the interaction
between gravity and perspective—the two laws that deter-
mine the dynamics of our videos. We first test if the learned
physical behavior of our model can generalize to dropping
heights and depths beyond its training distribution. Then,
we study the ability of the model to learn the probability
distribution induced by the uncertainty of perspective.

5.1. Generalization to Unseen Depths and Heights

Depth and height are the main factors that affect the dy-
namics of a falling object in our videos. We can see this by
combining the laws of gravity with perspective under our
camera assumptions to model the object’s image y coordi-
nate as a function of time (further details on our coordinate
system are described in Appendix G):

y(t) =
f

Z

(
Y0 −

1

2
gt2

)
. (2)

From Equation (2), we see that the random variables that af-

fect object motion are Z (depth) and Y (height) (the camera
focal length f is fixed). Thus, we are interested in testing
generalization on unseen values of Y and Z.

We create a simulated test set in which a single object is
dropped from varying depths and heights, using objects and
backgrounds unseen during training. We uniformly sam-
ple depth and height values (in meters) from the Cartesian
product of the ranges [1, 5] and [0.5, 2.5], respectively. The
camera height is fixed at 0.5m, and depth-height pairs out-
side the camera viewing frustum are discarded. A sample
is in-distribution (ID) if its dropping depth and height both
fall in the range [1, 3] and [0.5, 1.5].

Since we have access to the ground truth dropping time in
simulation, we also employ a dropping time error, a metric
we describe in Appendix B. Our analysis in Table 2 shows
that performance degrades for out-of-distribution scenarios.

Since depth and height are the main physical quantities that
affect falling dynamics, this finding indicates that our model
may struggle to learn a fully generalizable law that accounts
for the interaction of perspective and gravity.

Setting L2 (↓) Chamfer (↓) IOU (↑) Time Error (↓)

ID 0.036 0.088 0.155 0.091
OOD 0.044 0.143 0.049 0.187

Table 2. Results of our metrics on in-distribution (ID) and out-of-
distribution (OOD) depth-height combinations. The values used
for depth range from 1-5m (ID range [1, 3]) and height values
range from 0.5-2.5 (ID range [0.5, 1.5]).

5.2. Distributional Analysis

Camera view Side view

Camera

Camera View Side View

Camera

Figure 9. Demonstration of ambiguity in 2D perspective projec-
tions. Each of the three clouds appears the exact same in the
camera’s image. The right side shows how we perform a scale and
translation augmentation to generate deliberately ambiguous data.

The evolution of a physical system is not uniquely deter-
mined by a single initial image, since the lossy uncertainty
of perspective induces a distribution of possible outcomes as
shown in Figure 9. An ideal video world model should (1)
output videos that are faithful to the evolution of some plau-
sible world state and (2) provide accurate coverage across
the entire distribution of the world that is possible from
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its conditioning signal. In this section, we examine these
two facets by studying p(t|y): the distribution of dropping
times possible from an object at coordinate y in the image
plane. To do this, we create a simulated dataset that has
a much wider distribution p(t|y) than our PSFT dataset.
See Appendix F for more details on its construction.

5 10 150
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H
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Figure 10. Examples of model trajectories lifted to 3D. The blue
line represents the height of the camera ray passing through the
bottom of the dropping object as a function of depth. The set of
possible dropping trajectories at a given depth are depicted in gray.
The lifted trajectory of the model is depicted in green.
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Figure 11. Visualizing p(t|y) misalignment for different images.
Green shows the ground-truth CDF, orange is the 32-frame quan-
tized version, and blue is the empirical CDF of 128 different
samples of dropping times from the model.

Testing (1): 3D faithfulness of trajectories.

After training our model on this new dataset, we test whether
its trajectories are consistent with a valid 3D world state.
We first obtain an estimated dropping time from generated
videos using the procedure described in Section 5.1. Us-
ing knowledge of the camera position, focal length, sensor
width, and y, we can obtain an implied depth and height of
the trajectory. We can then back-project the video trajectory
to 3D and analyze whether they constitute physically accu-
rate trajectories. We give further details about this process
in Appendix G. As show in in Figure 10, we find that our
model’s lifted trajectories consistently align with the 3D
trajectory at the height and depth implied by its dropping
time, giving evidence that the model’s visual outputs are
faithful to some plausible real-world state.

Testing (2): distributional alignment.

Going beyond the level of individual trajectories, we study
the model’s learned conditional distribution p(t|y). We

create 50 different initial images with differing values of
y, generate 128 different videos from each, and estimate
the dropping time in each video. Using the laws of gravity,
the laws of perspective, and the assumption of uniform
depth sampling in our dataset, we can analytically derive
the probability p(t|y) as

p(t|y) =

{
gt

(Zmax−Zmin)β
, tmin ≤ t ≤ tmax

0, otherwise
(3)

where β is a constant that depends on f , y and the camera
height. The derivation is given in Appendix E.

We then measure goodness-of-fit for each of the 50 experi-
ments using the Kolmogorov–Smirnov (KS) test (Massey Jr,
1951). The null hypothesis of the KS test is that the two
distributions being compared are equal, and we consider
p-values less than 0.05 as evidence of misalignment. Since
our measured times have limited precision and can only take
32 distinct values—due to estimating the contact frame—we
approximate the ground truth p(t|y) using a Monte Carlo
method. We sample 1000 values from the ground truth distri-
bution and then quantized them into 32 bins corresponding
to their frame, which we use as ground truth observations
in the KS test. We find that in all 50/50 cases, the p-value
from the test is less than 0.05, which provides evidence that
the model does not learn the correct distribution of dropping
times. We visualize the misalignment between the empirical
CDF of the model’s in Figure 11.

In summary, while our model’s trajectories show promis-
ing tendencies to ground themselves to plausible 3D world
states, the range of possible outputs from the model does
not align with the ground truth distribution.

6. Conclusion
This work studies post-training as an avenue for adapting
adapting pre-trained video generator into world models. We
introduce a post-training strategy that is highly effective in
aligning our model. Our work raises interesting insights into
the learned distributions of generative models. Qualitatively,
large scale image or video generative models appear to excel
at generating likely samples from the data distribution, but
this alone does not imply that they match the data distri-
bution well in its entirety. As long as a model is able to
generate likely samples, global distributional misalignment
is not necessarily a problem for content creation. However,
this problem becomes critical for world models, where align-
ment across the entire distribution is necessary for faithful
world simulation. The insights revealed by our study, made
possible by our constrained and tractable setting, indicate
that although post-training improves per-sample accuracy,
general distributional alignment remains unsolved.
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A. Discussion of Image-to-Video setting.
We note that our choice of single-image input, as opposed to multi-frame input, comes with some trade-offs. We choose
the image-to-video setting because it is widely supported among many different models, allowing us to make effective
comparisons across the current state-of-the-art. However, only conditioning on a single frame introduces significant
ambiguity. Due to the loss of information caused by projecting the 3D world through perspective, it may not be possible to
directly infer the size of the object or its height. In practice, we find our metrics are still reliable signals of task success, but
we still study the problem of ambiguity more extensively in Section 5.2.

B. Metric details.
We propose three metrics to assess the accuracy of trajectories, shape fidelity, and object permanence. Each of our metrics
compare frames from the ground-truth video with the generated video. Because different models can operate at different fps,
we perform fps alignment as part of our evaluation process. To perform fps alignment, we map each frame index of the
generated videos to the ground truth using fgen and fgt, where fgen and fgt are the fps of generated video and ground truth
respectively. For i-th frame in the generated video, we find the corresponding aligned frame index j in the ground truth
video:

j = round(i ·
fgen

fgt
) (4)

Through fps alignment, we downsample the ground truth video to match the frame number of the generated video. We
denote the downsampled ground truth as {Igt

i }Ni=1 and the generated video as {Igen
i }Ni=1, where N is the number of frames

in the generated video.
Trajectory L2. For each frame in both the generated video and ground truth, we calculate the centroid of the masked region.
We then compute L2 distance between the centroids of corresponding frames:

L2 =
1

N

N∑
i=1

∥Cgen
i − Cgt

i ∥2 (5)

where Cgen
i , Cgt

i ∈ R2 are the centroids of the dropping object in the i-th frame of generated video and the ground truth
respectively.
Chamfer Distance (CD). To assess the shape fidelity of objects, we calculate the Chamfer Distance (CD) between the mask
regions of the generated video and ground truth:

CD =
1

N

N∑
i=1

(
1

|Pi|
∑
p∈Pi

min
q∈Qi

∥p− q∥2 +
1

|Qi|
∑
q∈Qi

min
p∈Pi

∥q − p∥2
)

where Pi = {pj}|Pi|
j=1 and Qi = {qj}|Qi|

j=1 are the sets of mask points in the i-th frame of the generated video and ground
truth respectively.
Intersection over Union (IoU). We use the Intersection over Union (IoU) metric to evaluate object permanence. IoU
measures objects’ degree of overlap between the generated video and ground truth. This is formulated as follows:

IoU =
1

|N |

N∑
i=1

|M gen
i ∩M gt

i |
|M gen

i ∪M gt
i |

(6)

where M gen
i ,M gt

i ∈ {0, 1}H×W are binary segmentation masks of the falling object in the i-th frame of the generated and
ground truth videos respectively.

Time error. When testing on videos generated in simulation, we can provide a timing error. From the dropping height Y0

of the ground truth video, which we have access to from the simulator, we can derive tdrop =
√

Y0
2
g . We then obtain a

dropping time from the model’s output by estimating the frame of impact as the first frame F whose centroid velocity in the
y direction is negative. If tdrop occurs in between F and F − 1, then we define the time error Etime as zero. Otherwise, we
define the time error as

Etime = min

(∣∣∣∣F − 1

fps
− tdrop

∣∣∣∣ , ∣∣∣∣ Ffps
− tdrop

∣∣∣∣) . (7)
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C. ORO implementation details.
In our setting, we do not cut the gradient after step k like VADER. The gradient ∇θR(x′

0, x0) backpropagates through all
diffusion timesteps and update the model weights θ:

∇θ(R(x′
0, x0)) =

T∑
t=0

∂R(x′
0, x0)

∂xt
· ∂xt

∂θ
(8)

where T is the total diffusion timesteps.

Segmentation Reward. We utilize SAM 2 (Ravi et al., 2024) to generate segmentation masks across frames for generated
video:

M gen = SAM-2(x0) (9)

where M gen denotes the masks of the falling object in the generated video. We obtain ground truth masks M gt using Kubric
(Greff et al., 2022). To avoid non-differentiable reward, we use Sigmoid to normalize mask logits of generated video instead
of converting them to binary masks. We use IoU between M gen and M gt as reward function:

R(x′
0, x0) = IoU(M gen,M gt) (10)

Maximizing objective 1 is equivalent to minimizing the following objective:

J(θ) = E(x0,c)∼D,x′
0∼pθ(x′

0|c)[1− IoU(M gen,M gt)] (11)

This objective constrains the position and shape of the generated object in the video, encouraging a greater intersection with
the object region in the ground truth video. The model learns to generate more accurate object positions and shapes through
training with this objective.

Optical Flow Reward. We utilize RAFT (Teed & Deng, 2020) to generate optical flow for both generated videos and
ground truth:

V gen = RAFT(x′
0)

V gt = RAFT(x0)
(12)

where V gen, V gt denote the optical flows of generated videos and ground truth. We define the reward as follows:

R(x′
0, x0) = −|V gen − V gt| (13)

Maximizing objective 1 is equivalent to minimizing the following objective:

J(θ) = E(x0,c)∼D,x′
0∼pθ(x′

0|c)[|V
gen − V gt|] (14)

This objective constrains the motion of the generated object in the video. The model learns to generate more accurate
physical motion through training with this objective.

Depth Reward. We utilize Depth-Anything-V2 (Yang et al., 2024a) to generate optical depth maps for both generated
videos and ground truth:

Dgen = Depth-Anything-V2(x′
0)

Dgt = Depth-Anything-V2(x0)
(15)

where Dgen, Dgt denote the depth maps of generated videos and ground truth. We define the reward as follows:

R(x′
0, x0) = −|Dgen −Dgt| (16)

Maximizing objective 1 is equivalent to minimizing the following objective:

J(θ) = E(x0,c)∼D,x′
0∼pθ(x′

0|c)[|D
gen −Dgt|] (17)

This objective constrains the 3d motion of the generated object in the video. The model learns to generate more accurate 3d
physical motion through training with this objective.
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D. Coordinate system
We give a visualization of the coordinate system used in this paper in Figure 12. To compute y, we first leverage a
segmentation map and find pixel row index that is just below the object. Once this row index is found, y can easily be
computed from the camera position, camera sensor size, and image resolution. We note that because our camera is assumed
to be in perspective with the XY plane, we can ignore X and x (not shown in figure) in our analyses in Section 5.1
and Section 5.2.

Object

𝑦

Camera view Side view

𝑌

𝑍

camera center

Object

𝑦

image plane

𝑓

Figure 12. A visualization of the coordinate system used in this paper (not to scale). The image plane height of the object is denoted as y,
its actual height in 3D as Y , and its depth as Z. The camera focal length is denoted as f .

E. Derivation of p(t|y)
In our dataset construction, we assume a uniform distribution for Z, where Z ∼ U(Zmin, Zmax), where Zmin = 2 and
Zmax = 18. As shown in Figure 12, the dropping height Y is a linear function of Z, i.e. Y = y + βZ for the slope β
that can be computed from y, f , the sensor size, and the camera height. This means we can solve for dropping time as
t =

√
2
gY =

√
2
g (y + βZ). Applying the transformation rule for probability density yields

p(t|y) =

{
gt

(Zmax−Zmin)β
, tmin ≤ t ≤ tmax

0, otherwise
(18)

where tmin =
√

2
g (y + βZmin) and tmax =

√
2
g (y + βZmax). Plugging in Zmin = 2 and Zmax = 18 yields Equation (3).

F. Ambiguous dataset
We introduce a new dataset for distributional analysis that broadens p(t|y), in contrast to the PSFT dataset, which prioritizes
realism and has a narrower distribution due to limited object depth variability. To create a dataset with p(t|y) that is
sufficiently diverse for meaningful analysis, we first set up the initial scenes as before, but then apply an augmentation where
a new depth values is sampled uniformly from [2, 18] and the object is scaled and translated such that it appears the same
in the original image, as shown in Figure 9. For simplicity, we limit our scenes to a single dropping object with no other
objects on the ground. We also disable shadows, preventing the model from using them as cues to infer depth and height.
Our dataset contains 5k samples consisting of 1k unique initial scenes each containing 5 different trajectories produced by
the augmentation.

G. Lifting trajectories to 3D
To lift trajectories to 3D, we first estimate tdrop as described in Section 5.1. Using SAM2 to estimate object masks in
the generated video, we can obtain a trajectory of the bottom of the object which we denote as y0, y1, . . . , yN where
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N = tdrop × fps. From tdrop, we can solve for an implied depth Z =
1
2 gt

2−y

β . We then compute the lifted 3D trajectory as
yi 7→ yi + βZ

H. PisaBench Details
In this section, we discuss the details of our data collection pipeline and annotations. We present more examples of real-world
videos and corresponding annotations in Figure 13.

H.1. Data Collection Pipeline

Collecting Real World Videos. We enlist approximately 15 volunteers to participate in the data collection process. We
hand out a tripod, tape, and invisible wire for each volunteer. To ensure the quality, diversity, and minimize the ambiguity
introduced by the environments, volunteers are provided with detailed guidelines. The key points of the data collection
guidelines are shown in Table 3.

Raw videos processing. For the collected raw videos, we cut each video into multiple clips and crop their sizes. For each
video clip, we annotate its starting position in the original long video and ensure that the duration of each segment does not
exceed 12 seconds. Regarding the sizes of the videos, we manually crop each video to an aspect ratio of 1:1, ensuring that
the falling objects remain fully visible within the frame during the cropping process. The processing interface is shown in
Figure 14.

H.2. Annotation Details

We present our annotation details Figure 15. For video captions, we present the word cloud figure in (a). For segmentation
masks, we annotate all objects in the first frame using positive and negative points, which are then propagated across
frames using the SAM 2 (Ravi et al., 2024) model to produce segmentation masks for all objects throughout the video. The
annotation interface is shown in (b).

In addition to providing the annotated caption “{object description} falls.”, we also add information to inform off-the-shelf
models of the task’s context as much as possible. To further enhance task comprehension, we append an additional
description “A video that conforms to the laws of physics.” We also employ negative prompts ”no camera motion” and ”no
slow-motion” to ensure environmental stability and impose constraints on the generated videos. These prompts explicitly
instruct the models to avoid including camera motion or any non-real-time object motion, thereby maintaining consistency
with real-world physics.

I. Inference Details
We present the inference configurations of each closed or open model we evaluate in Table 4. For models that do not support
generating videos with 1:1 aspect ratio, we pad initial frames with black borders to the resolution supported by these models,
and finally remove the black borders from the generated videos.

J. More Qualitative Examples
We present more qualitative examples in Figure 16 - Figure 22. Although in some showcases, models can roughly predict
the downward trend, models still struggle to predict plausible shape and motion. The defects in the models can be mainly
attributed to the following aspects:

• Trajectory correctness: in most videos, models fail to predict even the basic falling trajectory of objects, as shown
in Figure 19 (a), despite this being highly intuitive for humans. Even in cases where the falling trajectory is roughly
correctly predicted, the models still struggle to accurately predict subsequent events, such as collisions, as illustrated in
Figure 16 (f).

• Object consistency: in many generated videos, object consistency is poor. Models struggle to infer the appearance of
objects from multiple viewpoints in a physically plausible manner, resulting in unnatural appearances, as shown in
Figure 16 (a). Additionally, models perform poorly in maintaining object permanence, causing objects to appear blurry,
as illustrated in Figure 20 (f). Furthermore, models sometimes introduce new objects into the video, as depicted in
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Figure 20 (e).

• Scene consistency: models struggle to maintain scene consistency, leading to abrupt transitions in many videos. These
sudden changes make videos appear unnatural, as shown in Figure 18 (f).

K. Simulated Adaption Details
We use the Kubric (Greff et al., 2022) simulation and rendering engine for creating our simulated videos. Kubric uses
PyBullet (Coumans et al., 2010) for running physics simulations and Blender (Community, 2018) for rendering. We set the
simulation rate to 240 steps per second and render 2-second videos at 16 fps, resulting in 32 frames per video. Each scene
consists of objects from the Google Scanned Objects (GSO) dataset (Downs et al., 2022) and uses environmental lighting
from HDRI maps provided by Kubric. We use 930 objects and 458 HDRI maps for training and 103 objects and 51 HDRI
maps for testing.

For each video, we randomly choose 1-6 objects to drop. These objects are placed at a height uniformly sampled from 0.5m
to 1.5m. Below each of these objects, a possibly empty pile of up to 4 objects spawns beneath to create collisions. The
objects are placed in a spawn region of size 2m × 2m.

The camera is initially positioned 1m behind this region, with its height varying uniformly between 0.4m and 0.6m. Once all
objects are placed, the camera moves back in random increments until all objects are visible within the camera frame. The
camera uses a focal length of 35 mm, a sensor width of 32mm, and an aspect ratio of 1 × 1.

L. Limitations
In this work, we collect and manually annotate a dataset of 361 real-world videos and design three spatial metrics to
evaluate the performance of state-of-the-art image-to-video (I2V) models in a fundamental physical scenario: free fall. Our
metrics focus solely on spatial positional relationships, excluding object appearance attributes such as color. To enable more
fine-grained evaluations of appearance characteristics, we aim to develop metrics based on Multimodal Large Language
Models (MLLMs) or pixel-level analysis in future work.

Furthermore, we propose the PSFT and ORO methods to fine-tune the Open-Sora model (Zheng et al., 2024), improving its
ability to generate physically plausible videos. Despite these improvements, certain limitations remain, specifically, the
generation of blurry objects in some videos. We hope to address these challenges in future research by refining both the
dataset and the fine-tuning strategies, aiming to produce videos that better maintain object visuals.
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PISA Experiments: Exploring Physics Post-Training for Video Diffusion Models by Watching Stuff Drop

（a) A white paper roll falls.A whiAte paper roll falls.

（b) A transparent bottle falls.A whiAte paper roll falls.

（c) A black bottle falls.A whiAte paper roll falls.

（d) A white bottle falls.A whiAte paper roll falls.

Figure 13. Examples of real world videos and annotations. We present video frames in the first row and mask annotations in the second
row.
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Aspect Requirements
Camera

• The camera must be stabilized using a tripod.

• The dropping object should remain visible throughout the entire fall.

• The trajectory of the object should be sufficiently centered in the frame.

• Ensure the slow-motion setting is configured to 120 fps.

• Avoid a completely top-down perspective; the frame should include both the floor and
the wall for spatial context.

• It is acceptable to record one long video containing multiple drops at the same location.

Objects

• Most objects should be rigid and non-deformable.

• A limited number of flexible or deformable objects may be included, as such data is also
valuable.

Dropping Procedure

• Secure the object with a wire using tape, ensuring stability. Multiple tapings may be
necessary for proper stabilization.

• Visibility of the wire in the video is acceptable.

• No body parts should appear in the frame. If this is challenging, consider having a
partner monitor the camera or use screen-sharing software to view the camera feed on a
laptop for uninterrupted framing.

• Record videos in a horizontal orientation to simplify cropping and to help keep the
frame free of unnecessary elements.

• Use a short wire to enhance object stability.

• The object should remain stationary before being dropped.

Scene Composition

• Make the scenes dynamic and engaging. Include interactions with other objects, such as
collisions or objects tipping over. Static objects should serve as active elements rather
than mere background props.

• Avoid filming in classroom or laboratory environments.

• Include a variety of dropping heights.

• Film in different environments, ensuring at least one setting is outside your apartment.

• Minimize human shadows in the frame whenever possible.

• Ensure good lighting and maintain strong contrast between the objects and the back-
ground.

Table 3. Key points of real world videos collection guideline. We have detailed requirements for camera, objects, dropping procedure and
scene composition to ensure the quality, diversity and minimize ambiguity introduced by environments.
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（b)（a)

Figure 14. Video processing interface. (a) we annotate starting positions in the original long videos and clip them into multiple clips less
than 12 seconds. (b) We drag the cropping box to crop the video size to an aspect ratio of 1:1.

（a) （b)

Figure 15. Annotation details of real world videos. (a) Word cloud of objects in video captions. Our videos contain a variety of daily life
objects. (b) Interface for annotating positive and negative points in the first frame. Red and blue dots indicate positive and negative points
respectively. We annotate all objects in the midair and ground.

Model Resolution Number of Frames FPS Guidance Scale Sampling Steps Noise Scheduler

C
lo

se
d

Sora 720× 720 150 30 - - -
Kling-V1.5 960× 960 150 30 1.0 - -
Kling-V1 960× 960 150 30 1.0 - -
Runway Gen3 1280× 768 156 30 - - -

O
pe

n

CogVideoX-5B-I2V 720× 480 48 8 6.0 50 DDIM
DynamiCrafter 512× 320 90 30 0.7 50 DDIM
Pyramid-Flow 1280× 768 120 24 4.0 10 EulerDiscrete
Open-Sora 512× 512 90 30 7.0 30 RFLOW

Table 4. Inference details for models we evaluate, where “-” indicates the information is not available.
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(a) A brown bottle falls.

(b) A grey bottle falls.

(c) A grey paper cup falls.

(d) A paper cup falls.

(e) A white bottle falls.

(f) A white box falls.

Figure 16. Qualitative examples of Kling-V1 (Kuaishou, 2024). In (a) (b) (c) (f), objects have a tendency to fall. (b) (c) are roughly
consistent with the laws of physics. In (a) (f), the shape of the object does not match the first frame. In (d), the paper cup is suspended in
midair. In (e), new object is introduced. In (e), the model fails to correctly predict the collision that occurs after the white box falls and the
chain of events that follows.
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(a) A black and grey glove falls.

(b) A black bottle falls.

(c) A blue and white box falls.

(d) A brown bottle falls.

(e) A Coca-Cola can falls.

(f) A pink box falls.

Figure 17. Qualitative examples of Runway Gen3 (Runway, 2024). In (b) (e), objects have a tendency to fall. In (a) (e) (f), new objects
are introduced. In (b) (d), the shape of the object does not match the first frame. In (c), the box is suspended in midair.
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(a) A black bottle falls.

(b) A black helmet falls.

(c) A paper box falls.

(d) A white bottle falls.

(e) A grey paper cup falls.

(f) A white box falls.

Figure 18. Qualitative examples of CogVideoX-5B-I2V (Yang et al., 2024c). In (a) - (f), objects have a tendency to fall. However, in all
the videos, there are violations of physics. In (a) (b), the objects are divided into two parts. In (c) (d) (e), the shape of the object does not
match the first frame. In (c), the trajectory is not a vertical fall. In (f), scene changes suddenly, which does not match the first frame.
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(a) A black box falls.

(b) A card holder falls.

(c) A white bottle falls.

(d) A white box falls.

(e) An orange and white box falls.

(f) A shoe falls.

Figure 19. Qualitative examples of DynamiCrafter (?). In all the videos, objects do not have a tendency to fall, suspended in the midair.
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(a) A black bottle falls.

(b) A green and white box falls.

(c) A grey bottle falls.

(d) An orange tube falls.

(e) A white bottle falls.

(f) A plastic box falls.

Figure 20. Qualitative examples of Pyramid-Flow (Jin et al., 2024). In (b) (d) (e), objects have a tendency to fall. In (a) (b) (e) (f), new
objects are introduced. In (c), scene changes, which does not match the first frame.. In (d), the tube becomes blurry.
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(a) A bottle full of water falls.

(b) A brown bottle falls.

(c) A grey paper cup falls.

(d) A paper box falls.

(e) A white bottle falls.

(f) A white box falls.

Figure 21. Qualitative examples of Open-Sora (Zheng et al., 2024). In all the videos, objects do not have a tendency to fall, suspended in
the midair. In (b) (d), scene changes suddenly, which does not match the first frame. In (e), new object is introduced.
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(a) A brown bottle falls.

(b) A grey eraser falls.

(c) A grey paper cup falls.

(d) A transparent bottle falls.

(e) A red wrapping paper falls.

(f) A white bottle falls.

Figure 22. Qualitative examples of our method (Open-Sora + PSFT + ORO). In all the videos, objects have a tendency to fall. However,
the consistency of objects is still insufficient. In some frames, objects become blurry. Objects sometimes disappear after collision.
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